首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   7篇
测绘学   2篇
大气科学   2篇
地球物理   25篇
地质学   26篇
海洋学   19篇
天文学   22篇
自然地理   11篇
  2021年   1篇
  2019年   2篇
  2018年   2篇
  2017年   6篇
  2016年   2篇
  2015年   2篇
  2014年   6篇
  2013年   5篇
  2012年   8篇
  2011年   9篇
  2010年   8篇
  2008年   6篇
  2007年   6篇
  2006年   2篇
  2005年   4篇
  2004年   1篇
  2003年   7篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1996年   2篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1978年   2篇
  1977年   2篇
排序方式: 共有107条查询结果,搜索用时 46 毫秒
101.
I review the role of planetary migration on the formation process of terrestrial planets. I first show a simple estimation for growth timescale of solid proto-planets and review a linear theory of disk-planet gravitational interaction to estimate the migration rate of proto-planets in a gas disk, and then discuss the difficulty of the formation of terrestrial planets in terms of comparison between migration timescale and growth timescale. Next I show recent studies which suggest possible mechanisms to solve the problem. I briefly discuss the formation process of Mercury in the context of terrestrial-planet formation.  相似文献   
102.
Takayuki  Uchino  Makoto  Kawamura 《Island Arc》2010,19(1):177-191
The Nedamo Terrane, an Early Carboniferous accretionary complex, is the oldest biostratigraphically dated accretionary complex in Japan. The purpose of this study is to describe and interpret a conglomerate from the Nedamo Terrane that contains clasts of high-pressure/low-temperature (high- P/T ) schist (mainly garnet-bearing phengite schist) and ultramafic rock, and to infer the tectonics of an Early Carboniferous arc–trench system at the eastern margin of the paleo-Asian continent. Clasts of high- P/T schist and ultramafic rock within the conglomerate make up 8.4 and 6.7% of the total clasts, respectively, based on modal counts. These clasts are subangular to subrounded, whereas volcanic clasts are well rounded. The source of the schist clasts, which yield a radiometric age of 347–317 Ma, is considered to be the Renge Metamorphic Rocks of Southwest Japan or equivalent rocks. Based on the chemical composition of chromian spinel, the source of ultramafic clasts is inferred to be the island-arc-type Ordovician Miyamori and Hayachine ultramafic complexes in the Kitakami Massif. The conglomerate records multiple provenance regions, including an island arc (South Kitakami Terrane) and a forearc ridge; the high P/T schist and ultramafic rocks were exhumed in the forearc region. The duration of the interval from the early stages of exhumation of the schist to its deposition in the trench as clasts is estimated to have been less than 30 my.  相似文献   
103.
We present a data format for the output of general N-body simulations, allowing the presence of individual time steps. By specifying a standard, different N-body integrators and different visualization and analysis programs can all share the simulation data, independent of the type of programs used to produce the data. Our Particle Stream Data Format, PSDF, is specified in YAML, based on the same approach as XML but with a simpler syntax. Together with a specification of PSDF, we provide background and motivation, as well as specific examples in a variety of computer languages. We also offer a web site from which these examples can be retrieved, in order to make it easy to augment existing codes in order to give them the option to produce PSDF output.  相似文献   
104.
We report δ7Li, Li abundance ([Li]), and other trace elements measured by ion probe in igneous zircons from TTG (tonalite, trondhjemite, and granodiorite) and sanukitoid plutons from the Superior Province (Canada) in order to characterize Li in zircons from typical Archean continental crust. These data are compared with detrital zircons from the Jack Hills (Western Australia) with U–Pb ages greater than 3.9 Ga for which parent rock type is not known. Most of the TTG and sanukitoid zircon domains preserve typical igneous REE patterns and CL zoning. [Li] ranges from 0.5 to 79 ppm, typical of [Li] in continental zircons. Atomic ratios of (Y + REE)/(Li + P) average 1.0 ± 0.7 (2SD) for zircons with magmatic composition preserved, supporting the hypothesis that Li is interstitial and charge compensates substitution of trivalent cations. This substitution results in a relatively slow rate of Li diffusion. The δ7Li and trace element data constrain the genesis of TTGs and sanukitoids. [Li] in zircons from granitoids is significantly higher than from zircons in primitive magmas in oceanic crust. TTG zircons have δ7Li (3 ± 8‰) and δ18O in the range of primitive mantle-derived magmas. Sanukitoid zircons have average δ7Li (7 ± 8‰) and δ18O higher than those of TTGs supporting genesis by melting of fluid-metasomatized mantle wedge. The Li systematics in sanukitoid and TTG zircons indicate that high [Li] in pre-3.9-Ga Jack Hills detrital zircons is a primary igneous composition and suggests the growth in proto-continental crust in magmas similar to Archean granitoids.  相似文献   
105.
Phase relations in the system TiO2–ZrO2 were examined in the pressure range of 3.5–12?GPa at 1,800?°C, using multianvil apparatus. At 1,800?°C, TiO2 rutile transforms to αPbO2 structure at 10?GPa, and the αPbO2-type solid solution is stable in compositional range between TiO2 and about (Ti0.6, Zr0.4)O2 at 3.5–12?GPa. Combination of the present results with the published data at 0–3?GPa demonstrates that continuous solid solution with the αPbO2-type structure is stable between TiO2 and (Ti1?x , Zr x )O2 (x?≈?0.6) at 0–12?GPa. This indicates that both the αPbO2-type TiO2 and srilankite Ti2ZrO6 with the same structure belong to the continuous solid solution system though the two phases have been regarded as different minerals. With increasing ZrO2 content, lattice parameters of a- and c-axes of the αPbO2-type solid solution increase, but b-axis is almost constant or slightly decreases. At higher pressure, the αPbO2-type solid solution dissociates into two phases, αPbO2-type phase and tetragonal zirconia. Srilankite with more TiO2-rich composition than Ti2ZrO6 might be found in natural rocks derived from the deep upper mantle.  相似文献   
106.
In the equatorial plasmasphere, plasma waves are frequently observed. To improve our understanding of the mechanism generating plasma waves from instabilities, a comparison of observations, linear growth-rate calculations, and simulation results is presented. To start the numerical experiments from realistic initial plasma conditions, we use the initial parameters inferred from observational data obtained around the plasma-wave generation region by the Akebono satellite. The linear growth rates of waves of different modes are calculated under resonance conditions, and compared with simulation results and observations. By employing numerical experiments by a particle code, we first show that upper hybrid-, Z-, and whistler-mode waves are excited through instabilities driven by a ring-type velocity distribution. The simulation results suggest a possibility that energetic electrons with energies of some tens of keV confined around the geomagnetic equator are responsible for the observed enhancements of Z- and whistler-mode waves. While the comparison between linear growth-rate calculations and observations shows the different tendency of wave amplitude of Z-mode and whistler-mode waves, the wave amplitude of these wave modes in the simulation results is consistent with the observation.  相似文献   
107.
Nineteen samples of metamorphosed carbonate-bearing rocks were analyzed for carbon and oxygen isotope ratios by ion microprobe with a ∼5-15 μm spot, three from a regional terrain and 16 from five different contact aureoles. Contact metamorphic rocks further represent four groups: calc-silicate marble and hornfels (6), brucite marble (2), samples that contain a reaction front (4), and samples with a pervasive distribution of reactants and products of a decarbonation reaction (4). The average spot-to-spot reproducibility of standard calcite analyses is ±0.37‰ (2 standard deviations, SD) for δ18O and ±0.71‰ for δ13C. Ten or more measurements of a mineral in a sample that has uniform isotope composition within error of measurement can routinely return a weighted mean with a 95% confidence interval of 0.09-0.16‰ for δ18O and 0.10-0.29‰ for δ13C. Using a difference of >6SD as the criterion, only four of 19 analyzed samples exhibit significant intracrystalline and/or intercrystalline inhomogeneity in δ13C at the 100-500 μm scale, with differences within individual grains up to 3.7‰. Measurements are consistent with carbon isotope exchange equilibrium between calcite and dolomite in five of six analyzed samples at the same scale. Because of relatively slow carbon isotope diffusion in calcite and dolomite, differences in δ13C can survive intracrystalline homogenization by diffusion during cooling after peak metamorphism and likely represent the effects of prograde decarbonation and infiltration. All but 2 of 11 analyzed samples exhibit intracrystalline differences in δ18O (up to 9.4‰), intercrystalline inhomogeneity in δ18O (up to 12.5‰), and/or disequilibrium oxygen isotope fractionations among calcite-dolomite, calcite-quartz, and calcite-forsterite pairs at the 100-500 μm scale. Inhomogeneities in δ18O and δ13C are poorly correlated with only a single mineral (dolomite) in a single sample exhibiting both. Because of relatively rapid oxygen isotope diffusion in calcite, intracrystalline inhomogeneities in δ18O likely represent partial equilibration between calcite and fluid during retrograde metamorphism. Calcite is in oxygen isotope exchange equilibrium with forsterite in one of four analyzed samples, in equilibrium with dolomite in none of six analyzed samples, and in equilibrium with quartz in neither of two analyzed samples. There are no samples of contact metamorphic rock with analyzed reactants and products of an arrested metamorphic reaction that are in oxygen isotope equilibrium with each other. The degree of departure from equilibrium in analyzed samples is variable and is often related, at least in part, to alteration of δ18O of calcite during retrograde fluid-rock reaction. In situ sub-grain-scale carbon and oxygen isotope analyses of minerals are advisable in the common applications of stable isotope geochemistry to metamorphic petrology. Correlation of sub-mm scale stable isotope data with imaging will lead to improved understanding of reaction kinetics, reactive fluid flow, and thermal histories during metamorphism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号